Skip to main content

[Machine Learning]: #8 Logistic Model


[Machine Learning]: #8 Logistic Model


***************************************
[Write Infront]:
let's review the model we have already defined in [Machine Learning]: #7 Classification Introduction 
Training Sets $$\{ ({x^{(1)}},{y^{(1)}}),({x^{(2)}},{y^{(2)}}),.....({x^{(m)}},{y^{(m)}})\} $$
where $$x \in \left[ {\matrix{
   1  \cr
   {{x_1}}  \cr
   {...}  \cr
   {{x_n}}  \cr

 } } \right]$$
and \(x_0 = 1\ , y \in \{ 0,1\}\)
$${H_\theta }(x) = {1 \over {1 + {e^{ - {\theta ^T}x}}}}$$. Our problem become to that how to define a Cost Function for \({H_\theta }(x)\) to determine a Best \(\theta \)
*********************************************************************************

*********************************************************************************
[Cost Function for Logistic Function]:
Some of you may ask why we don't use the Cost Function for Linear Regression?
It is because we want to define the Cost Function is Convex !!! Which makes sure that if we find a min, it is the global min.

Now, let's define the Cost Function for the Logistic Function
$${\mathop{\rm Cos}\nolimits} t({H_\theta }(x),y) = \left\{ {\matrix{
   { - \log ({H_\theta }(x))} & {y = 1}  \cr
   { - \log (1 - {H_\theta }(x))} & {y = 0}  \cr

 } } \right.$$
$$J(\theta ) = {1 \over m}\sum\limits_{i = 1}^m {{\mathop{\rm Cos}\nolimits} t({H_\theta }({x^i}),{y^i})} $$

When \(y=1\)
 then we have to see some properties of this function:

so, we \({H_\theta }(x)\) is approaching 1 which is the 'right answer' for the classification, the Cost Function is approaching to 0. On the contrary, when \({H_\theta }(x)\) is approaching 0 which is a 'wrong answer' for the classification. The cost is infinite.

When \(y=0\)

so, we \({H_\theta }(x)\) is approaching 0 which is the 'right answer' for the classification, the Cost Function is approaching to 0. On the contrary, when \({H_\theta }(x)\) is approaching 1 which is a 'wrong answer' for the classification. The cost is infinite.

To Summary. We define a Cost Function as shown above which make sure that it is Convex Function.

*********************************************************************************

*********************************************************************************
[Simpilified Cost Function and Gradient Descent]:
First, we simplify $${\mathop{\rm Cos}\nolimits} t({H_\theta }(x),y) = \left\{ {\matrix{
   { - \log ({H_\theta }(x))} & {y = 1}  \cr
   { - \log (1 - {H_\theta }(x))} & {y = 0}  \cr

 } } \right.$$
to
$${\mathop{\rm Cos}\nolimits} t({H_\theta }(x),y) =  - y\log {H_\theta }(x) - (1 - y)\log (1 - {H_\theta }(x))$$
They are same, don't believe? Try \(y=1\) and \(y=0\), what you get?
Then, we plug the New \({\mathop{\rm Cos}\nolimits} t({H_\theta }(x),y)\) in the Cost Function. We get the following simplified Cost Function.
$$J(\theta ) =  - {1 \over m}[\sum\limits_{i = 1}^m {{y^i}\log {H_\theta }({x^i}) + (1 - {y^i})\log (1 - {H_\theta }({x^i}))]} $$.
Then, as we did before, we have to find \(\theta\) to minimize \(J(\theta )\)
*********************************************************************************

*********************************************************** **********************
[Gradient Descent]:
minimize \(J(\theta )\), we have to repeat the following function SIMULTANEOUSLY until it converge.
$${\theta _j} = {\theta _j} - \alpha {\delta  \over {\delta {\theta _j}}}J(\theta )$$
after math computations, we get:
$${\theta _j} = {\theta _j} - \alpha \sum\limits_{i = 1}^m {({H_\theta }({x^i}) - {y^i})x_j^i} $$

*********************************************************************************
[Advanced Optimization]:
  • Gradient Descent (Covered)
  • Conjugate Gradient
  • BFGS
  • L-BFGS
Advanced Optimization no need to manually select \(\alpha\) and  faster, but difficult .
I will try to make it easier to explain and I will post the important Algo this week. For implementation part, I use open source.


Comments

Popular posts from this blog

[LeetCode Solution 230]: Kth Smallest Element in a BST

Question: Given a binary search tree, write a function  kthSmallest  to find the  k th smallest element in it. ************************************************************************************************************************************ Write Infront To read to a tutorial, please to read the tutorial of in-order traversal of BST, please check: LeetCode Solution 94: Binary Tree Inorder Traversal We are going to solve this question using the following 4 methods: ->Binary Search ->Recursive ->Iterative ->Morris  Approach #1 Binary Search [Accepted] Detail Explanation The first method to solve this problem is using Binary Search. The idea is very easy and extremely to think. We use BST's property that the left child of the root is smaller than the root while the right child of the root is always bigger. We consider that the root is the pivot, and find the number of the nodes in the left subtree and the number of ...

[LeetCode Solution 145] Binary Tree Postorder Traversal

[LeetCode Solution 145]: Binary Tree Postorder Traversal Question: Given a binary tree, return the  postorder  traversal of its nodes' values. For example: Given binary tree  {1,#,2,3} , 1 \ 2 / 3 return  [3,2,1] . Approach #1 Recursive [Accepted] Detail Explanation The first method to solve this problem is using recursive. This is the classical method and straightforward. we can define a helper function to implement recursion. The java code is as follows: Java public class Solution { public List<Integer> postorderTraversal (TreeNode root) { List<Integer> res = new ArrayList<>(); helper(root, res); return res; } public void helper (TreeNode root, List<Integer> res) { if (root != null ) { if (root.left != null ) { helper(root.left, res); } if (root.right != null ) { helper(root.right, res); } res.add(root.val); } } } Complexity Analysis Ti...

[Interview]: URLify

[Interview]  URLify: -------------------------------------------------------------------------------------------------------------------------- Question: URLify: Write a method to replace all spaces in a string with ‘%20’, you may assume that the string has sufficient space at the end to hold the additional characters. Example  input: ' mr john smith '  output: ' mr %20john%20smith' --------------------------------------------------------------------------------------------------------------------------   Idea 1:  Start from the back and start replacing until the character is not ' ', and replace the characters in reverse order. Solution 1: public class Solution{ public String replace(char[] str) { boolean flag = false; StringBuffer sb = new StringBuffer(); for (int i = str.length - 1; i >= 0; i--) { if (str[i] != ' ') flag = true; if (flag == true) { if (str[i] == ' ') { s...