Skip to main content

[LeetCode Solution 98] Validate Binary Search Tree

Question: Validate Binary Search Tree


Given a binary tree, determine if it is a valid binary search tree (BST).
Assume a BST is defined as follows:
The left subtree of a node contains only nodes with keys less than the node’s key.
The right subtree of a node contains only nodes with keys greater than the node’s key.
Both the left and right subtrees must also be binary search trees.
Example 1:
    2
   / \
  1   3
Binary tree [2,1,3], return true.
Example 2:
    1
   / \
  2   3
Binary tree [1,2,3], return false.
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

Write Before

The problem is same to the BST Inorder Traversal: LeetCode 94 !!! Why?
Because the inorder traversal get the order from root.left -> root -> root.right,
if the ValidBST is true, the inorder traversal is ascending order.
How to implement inorder traversal in BST?
->Recursive Method
->Iterative Method
->Morris Method
The tutorial following have all the detail of inorder traversal.
BST inorder Traversal

Approach #1.1 Recursive [Accepted]

Detail Explanation
The first method to solve this problem is using recursive.
This is the classical method and straightforward. we can define a helper function to implement recursion.
We use the property of the BST, where root.left.value< root.value< root.right.value
The Java code is as follows:
public class Solution{

    public boolean isValidBST(TreeNode root) {
        if (root == null) return true;
        return helper(root, Long.MIN_VALUE,Long.MAX_VALUE);
    }

    public boolean helper(TreeNode root, long minValue, long maxValue)
    {
        if(root == null) return true;
        if(root.val<=minValue||root.val>=maxValue) return false;
          return helper(root.left, minValue, root.val) && helper(root.right, root.val, maxValue);

    }
}

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
Complexity Analysis
  • Time complexity: O(n). The time complexity is O(n) because the recursive function is T(n)=2T(n/2)+1.
  • Space complexity: O(n).

Approach #1.2 Inorder Traversal(Recursive + ArrayList) [Accepted]

Detail Explanation
Using recursive method to traverse BST and put the value into an array,
then check if the array is ordered or not.
Java
public class Solution2 {
    public boolean isValidBST(TreeNode root) {
        List<Integer> res = new ArrayList<Integer>();
        helper(root, res);
        for (int i = 0; i < res.size() - 1; ++i) {
            if (res.get(i) >= res.get(i + 1)) return false;
        }
        return true;
    }
    public void helper(TreeNode root, List<Integer> res) {
        if (root == null) return;
        helper(root.left, res);
        res.add(root.val);
        helper(root.right, res);
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
Complexity Analysis
  • Time complexity: O(n). The recursive complexity is O(n) and we have to traverse the array then where time complexity is O(n).
    So the overall time complexity is 2O(n) equal to O(n).
  • Space complexity: The worst case for recursive is O(n), and we need O(n) extra space for the array, So the overall time complexity is 2O(n) equal to O(n).

Approach #1.3 Inorder Traversal(Recursive Without ArrayList) [Accepted]

Detail Explanation
We can compare the value in the helper function.
This is almost same method strategy above,
the only change is instead of adding the value into the result list,
we have to check if the current value is larger than the previous one.
So, we need a poniter “preNode” and a flag,
where flag change its value only if this is not valid BST.
Java
class Solution {
    TreeNode preNode;
    int flag =1;
    public boolean isValidBST(TreeNode root) {
        preNode = null;
        helper(root);
        if (flag == 1)
            return true;
        else
            return false;
    }

    public void helper(TreeNode root) {

        if (root == null) return;

        helper(root.left);
        if(preNode== null){
            preNode = root;
        }else
        {
            if(root.val<=preNode.val)
            {
                flag = 0;
            }
            preNode = root;
        }
        helper(root.right);
    }
}

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
Complexity Analysis
  • Time complexity: O(n). The recursive complexity is O(n) but the worst case to find the tree is not the Valid BST still need O(n)
    So the overall time complexity is 2O(n) equal to O(n).
  • Space complexity: O(n).

Approach #2 Inorder Traversal(Iterative Method) [Accepted]

Detail Explanation
We need a stack to implement this method. Similiar to the inorder traversal, the only difference is we have curr pointer and pre pointer,
every time we pop from stack, we have to check the value of curr and pre.
Java
 public class Solution {
     public boolean isValidBST(TreeNode root) {
         Stack<TreeNode> stack = new Stack<TreeNode>();
         TreeNode curr = root, pre = null;

         while (curr != null || !stack.empty()) {
             while (curr != null) {
                 stack.push(curr);
                 curr = curr.left;
             }
             TreeNode temp = stack.pop();
             if (pre != null && temp.val <= pre.val) return false;
             pre = temp;
             curr = temp.right;
         }
         return true;
     }
 }
 ```
**Complexity Analysis**

* Time complexity : $$O(n)$$.

* Space complexity :  $$O(n)$$.

---
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26

Approach #3 Inorder Traversal(Morris Method) [Accepted]

Detail Explanation
The strategy is similar to the Morris Method in Inorder BST Traversal problem, but we need 3 extra pointers.
The Java code is as follows:
Java
class Solution {
    public boolean isValidBST(TreeNode root) {
        TreeNode pre = null, curr = root, temp = null;
        while(curr != null) {
            if(curr.left == null) {
                if(pre != null && pre.val >= curr.val)
                    return false;
                pre = curr;
                curr = curr.right;
            }
            else {
                temp = curr.left;
                while(temp.right != null && temp.right != curr)
                    temp = temp.right;
                if(temp.right == null) { // left child has not been visited
                    temp.right = curr;
                    curr = curr.left;
                }
                else { // left child has been visited already
                    temp.right = null;
                    if(pre != null && pre.val >= curr.val)
                        return false;
                    pre = curr;
                    curr = curr.right;
                }
            }
        }
        return true;
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
How it works?
Let us Go through the coding step by step:
1.jpg
2.jpg
3.jpg
4.jpg
5.jpg
6.jpg
7.jpg
8.jpg
9.jpg
Complexity Analysis
  • Time complexity: O(n).
  • Space complexity: O(1). The space complexity of Morris Traversal is O(1) because it just needs 3 “assisting” pointers. (TreeNode curr, TreeNode temp and TreeNode pre)

Comments

Popular posts from this blog

[LeetCode Solution 230]: Kth Smallest Element in a BST

Question: Given a binary search tree, write a function  kthSmallest  to find the  k th smallest element in it. ************************************************************************************************************************************ Write Infront To read to a tutorial, please to read the tutorial of in-order traversal of BST, please check: LeetCode Solution 94: Binary Tree Inorder Traversal We are going to solve this question using the following 4 methods: ->Binary Search ->Recursive ->Iterative ->Morris  Approach #1 Binary Search [Accepted] Detail Explanation The first method to solve this problem is using Binary Search. The idea is very easy and extremely to think. We use BST's property that the left child of the root is smaller than the root while the right child of the root is always bigger. We consider that the root is the pivot, and find the number of the nodes in the left subtree and the number of ...

[LeetCode Solution 145] Binary Tree Postorder Traversal

[LeetCode Solution 145]: Binary Tree Postorder Traversal Question: Given a binary tree, return the  postorder  traversal of its nodes' values. For example: Given binary tree  {1,#,2,3} , 1 \ 2 / 3 return  [3,2,1] . Approach #1 Recursive [Accepted] Detail Explanation The first method to solve this problem is using recursive. This is the classical method and straightforward. we can define a helper function to implement recursion. The java code is as follows: Java public class Solution { public List<Integer> postorderTraversal (TreeNode root) { List<Integer> res = new ArrayList<>(); helper(root, res); return res; } public void helper (TreeNode root, List<Integer> res) { if (root != null ) { if (root.left != null ) { helper(root.left, res); } if (root.right != null ) { helper(root.right, res); } res.add(root.val); } } } Complexity Analysis Ti...

[Interview]: URLify

[Interview]  URLify: -------------------------------------------------------------------------------------------------------------------------- Question: URLify: Write a method to replace all spaces in a string with ‘%20’, you may assume that the string has sufficient space at the end to hold the additional characters. Example  input: ' mr john smith '  output: ' mr %20john%20smith' --------------------------------------------------------------------------------------------------------------------------   Idea 1:  Start from the back and start replacing until the character is not ' ', and replace the characters in reverse order. Solution 1: public class Solution{ public String replace(char[] str) { boolean flag = false; StringBuffer sb = new StringBuffer(); for (int i = str.length - 1; i >= 0; i--) { if (str[i] != ' ') flag = true; if (flag == true) { if (str[i] == ' ') { s...